The title of a recent New York Times bestselling book sums it up best: The Future is Faster Than You Think: How Converging Technologies are Transforming Business, Industries, and Our Lives. Within the next decade, technology will bring us electric cars as the norm, advanced AI, robotics and virtual reality that will transform our daily lives and society as a whole.
The impact will hit all sectors of society – including transportation, retail, advertising, education, healthcare, entertainment and finance – and there will be a need for electrical engineers to answer the demand for these technologies.
That’s where you come in.
Electrical engineers explore the behavior of electrical devices, circuits and systems. Their work ranges from microchip development to the design of hybrid vehicle electronic systems. You see their handiwork everywhere, from cell phones and biomedical equipment to robots and smart grid technologies.
As an electrical engineer, you may specialize in communication systems, digital signal processing, wireless devices, integrated circuits, electric power, automatic controls, and optoelectronics. The possibilities are endless! And a George Fox engineering major with a concentration in electrical engineering can help you get started.
And, if you're wondering about our track record, get this: 100 percent of our engineering graduates have a job or are in graduate school within the first six months after graduation.
Connect Conceptual Design to Practical Application
As a student in our electrical engineering concentration, you will engage in a rigorous hands-on learning environment that connects conceptual design with practical application. Beginning your freshman year, you’ll work with state-of-the-art equipment and newly renovated facilities that enable you to develop your ideas into tangible prototypes.
A Wide Range of Career Possibilities
A rising profession, electrical engineering offers a diverse range of career possibilities ranging from development of electrical microchips for hospital patients, to design of hybrid vehicle electronic systems, to design of consumer electronics, or the development of large relays and generators for power stations.
Often overlapping with computer engineering, a degree in electrical engineering can open doors to a technical career in most any industry.
Engineering Solutions to Better Our World
As an electrical engineer, your capacity to impact society will be significant, beginning as a student in the Servant Engineering program. As part of core curriculum, engineering students create solutions to great technical challenges – for instance, by devising augmentative communication and physical therapy devices for patients at the Providence Center for Medically Fragile Children in Portland, Oregon.
You will design and fabricate electrical systems in courses spanning microelectronics, microwaves and radio frequency, communications, electrical power systems, electromagnetics, and digital and embedded systems.
You will design and fabricate multiple microprocessor-based printed circuit boards.
You will design and build a small-scale electrical micro-grid for a developing country.
You’ll work with professors who know you by name and are invested in your future.
You will have access to a state-of-the-art maker space with a printed circuit board laboratory.
We offer strong connections with local industry in Portland’s Silicon Forest.
You will learn experimental skills and experimental design in well-equipped laboratories.
You will participate in the junior-year engineering service project in our servant engineering program.
You will do a year-long multi-disciplinary (e.g. computer scientists, electrical, computer, mechanical and biomedical engineers) senior design experience that partners teams with industry partners.
This course is an introduction to the fundamental principles of economics, and their application at the micro and macro level. In the microeconomic portion of the course the behavior of individuals, households, and firms will be explored. The macroeconomic portion of the course will focus on economy-wide conditions, such as gross domestic product, unemployment, and recessions. Throughout the course the ways in which the economy contributes to, and deters from, human flourishing and well-being will be considered, discussed, and debated.
This course covers fundamental chemical principles, reactions, and mode theories. Special emphasis is given to the role of chemistry in everyday life. Three lectures and one laboratory period per week. Additional course fee is required. Prerequisite: Successful completion of MATH 190 Precalculus Mathematics (or equivalent).
The class is a study of limits limits of functions, applications of derivatives, and an introduction to integration.
Prerequisite: MATH 190 Precalculus Mathematics or equivalent.
A study of differential and integral calculus for functions of one variable. Additional topics include polar coordinates, infinite series, and parametric equations. Prerequisite: MATH 201 Calculus I.
This course is an extension of MATH 201 and 202 Calculus I and II to functions of more than one variable. Topics include vectors, vector-valued functions, partial derivatives, and multiple integration. Prerequisite: MATH 202 Calculus II.
A study of the theory, methods of solution, and applications of ordinary differential equations and the techniques of linear algebra necessary to accomplish that study. Prerequisite: MATH 202 Calculus II.
Mechanics, thermodynamics, electricity and magnetism, wave motion and optics, and modern physics, using calculus methods for analysis. Three lectures and one lab per week. Additional course fee is required.
Prerequisite: MATH 201 Calculus I.
Mechanics, thermodynamics, electricity and magnetism, wave motion and optics, and modern physics, using calculus methods for analysis. Three lectures and one lab per week. Additional course fee is required.
Prerequisite: PHYS 211 General Physics with Calculus I.
Introduction to the concepts and methods of engineering problem solving and design. Topics include the following: analysis and design methodologies, structured computer programming, basic principles of engineering graphics, the visualization and modeling of real-world systems, and an introduction to the history and ethics of the engineering profession. Computer-aided-design (CAD) tools, solid modeling and simulation software, and mathematics software applications are presented. Students work on numerous team design projects, communicating their results through oral and written reports. Meets twice weekly in a lecture/lab environment. Additional course fee is required. Prerequisite: MATH 190 Precalculus Mathematics or equivalent.
Introduction to the concepts and methods of engineering problem solving and design. Topics include the following: analysis and design methodologies, structured computer programming, basic principles of engineering graphics, the visualization and modeling of real-world systems, and an introduction to the history and ethics of the engineering profession. Computer-aided-design (CAD) tools, solid modeling and simulation software, and mathematics software applications are presented. Students work on numerous team design projects, communicating their results through oral and written reports. Meets twice weekly in a lecture/lab environment. Additional course fee is required. Prerequisite: ENGR 151 Engineering Principles I.
Servant engineering is a two-semester course sequence typically taken in the student’s junior year. In the summer before the course begins, students research a potential engineering project designed to serve others. These projects are proposed early in the first semester, and the most feasible projects are selected for the program. Students are then assigned to a team of four or five who work on a selected project. Projects might require a multi-disciplinary team ranging from computer science to civil engineering, or they might be more focused on a specific skill-set. Each team has a faculty mentor who helps guide the project. In both semesters, teams meet weekly with their faculty mentors and work through problem definition, specification development and conceptual development, with the goal of selecting a specific design for detailed design-and-build. Every project will be an opportunity to use the gifts that God has given us to serve others. Additional course fee is required. Prerequisite: ENGR 152. Final enrollment is contingent on approval from the College of Engineering.
Servant engineering is a two-semester course sequence typically taken in the student’s junior year. In the summer before the course begins, students research a potential engineering project designed to serve others. These projects are proposed early in the first semester, and the most feasible projects are selected for the program. Students are then assigned to a team of four or five who work on a selected project. Projects might require a multi-disciplinary team ranging from computer science to civil engineering, or they might be more focused on a specific skill-set. Each team has a faculty mentor who helps guide the project. In both semesters, teams meet weekly with their faculty mentors and work through problem definition, specification development and conceptual development, with the goal of selecting a specific design for detailed design-and-build. Every project will be an opportunity to use the gifts that God has given us to serve others. Additional course fee required. Prerequisite: ENGR 381. Final enrollment is contingent on approval from the College of Engineering.
In the senior design sequence, students apply their knowledge and design skills gained through course work to an industry-based project. In the first semester, interdisciplinary teams are formed to begin projects in conjunction with participating industrial sponsors. Necessary background research and feasibility studies are completed. Students must also consider the ethical, moral, environmental, and social impact of their designs. Collaboration with other departments of the university is encouraged. Additional course fee is required. Prerequisite: senior status in the engineering major.
The projects that were initiated in the first semester are further developed through simulation, prototyping, and testing. Use of analytic, computer, experimental, and design techniques is applied throughout the project. The design sequence culminates in the construction of the projects, oral presentations, and formal written reports. Additional course fee is required. Prerequisite: ENGR 481 Senior Design I.
A seminar series that discusses current trends and issues in the engineering profession. Features invited speakers from the industrial sector. Preparation for job search and post-graduation life. Additional course fee is required. Prerequisite: senior status in the engineering major or by permission.
An introduction to life science for those majoring in biology and bioscience-related fields. Topics include basic concepts in chemistry and biological molecules, an introduction to cellular structure, function and metabolism, genetics and theories of inheritance, and an introduction to prokaryotic cells and viruses. Three lectures and one two-hour laboratory per week. Additional course fee is required.
Structure and function of the human body. Fall semester topics include basic chemistry, body organization, integument, skeleton, muscles, and the nervous system, including special senses. The course is designed for nonscience majors. Three lectures and one laboratory per week. Additional course fee is required.
Structure and function of the human body. Spring semester topics include cardiovascular, reproductive, endocrine, respiratory, urinary, and digestive systems. The course is designed for nonscience majors. Three lectures and one laboratory per week. Prerequisite: BIOL 221 Human Anatomy and Physiology I, or permission from instructor. Additional course fee is required.
Fluid mechanics principles applied to biological systems and medical devices. Properties of biological fluids, energy and momentum balances, computational modeling.
Prerequisite: MATH 311 Differential Equations with Linear Algebra.
Mechanical behavior and material selection process required in engineering for medical applications. Materials to be covered include both short-exposure, such as surgical tools and catheters, and long-exposure, such as implants / shunts. Topics to be included are: stress, strain, torsion and deflection of biomaterials, the manufacturing process, performance characteristics, biocompatibility testing, and long-term biological response (tissue formation / fibrosis). Relevant design considerations will be discussed, including common medical device standards relating to biomaterials testing and performance. Behavior of deformable body systems for biomaterials under combinations of external loading is presented. Two lectures and one laboratory per week. Additional course fee is required.
Prerequisites: ENGM 211 Statics, ENGM 250 Principles of Materials Science and MATH 311 Differential Equations with Linear Algebra.
Medical imaging techniques have become important tools for monitoring of diseases and understanding of the molecular aspects of living organisms. This course provides a broad-based overview of major imaging techniques used in biomedical patient care and research. Application of analog, digital, and statistical techniques to the processing of biomedical signals. Includes sources, recording, and analysis of ECG, EEG, EMG, x-ray, computed tomography (CT), ultrasound, nuclear medicine (PET), and magnetic resonance imaging (MRI), The underlying physics, image formation theories and selected applications are presented.
Prerequisites: MATH 311 Differential Equations with Linear Algebra, ENGE 260 Circuits and Instrumentation.
The fundamental objective of this course is to explore medical device design and manufacturing. Students will thus learn about the working principles, design, manufacture, reliability and some regulatory hurdles involved in the development of biomedical devices and sensors. These include both external and implanted devices. Students will apply what they have learned to a design project culminating in a prototype presentation.
Prerequisites:BIOL 222 Human Anatomy and Physiology II, ENGB 330 Biotransport, and ENGB 340 Mechanics of Biomaterials.
From a biomechanical perspective, the healthy human skeleton is an optimal structure that has adapted its form in response to its function. Studying the mechanics of the skeleton provides information that can be used not only to design artificial prostheses and materials — and thus address specific health care issues — but also to aid in the design of more traditional engineering structures by understanding the behavior and underlying design features of this complex dynamic structure. The purpose of this course is twofold: to learn the fundamental concepts of orthopedic biomechanics and to enhance skills in mechanical engineering and bioengineering by analyzing the mechanical behavior of various complex biomedical problems.
Prerequisites: ENGM 360 Finite Elements and Computer Modeling
The course provides a basic understanding of assistive technology research and application in: wheelchair technology, augmentative communication, computer access, transportation safety, home and work site modifications, environmental access, and prosthetics. Issues related to terminology, interdisciplinary communication, consumer empowerment, information resources and service delivery development are also stressed. Course includes a weekly laboratory session that incorporates in vivo non-invasive kinematics measurements.
Prerequisites: BIOL 222 Human Anatomy and Physiology II and
ENGB 340 Mechanics of Biomaterials.
An introduction to DC and AC circuit theory, electronics, and instrumentation. Specific areas of study include Ohm’s law, basic circuit analysis techniques, electrical power, motor selection, circuit simulation software, measurement methods, various types of instrumentation devices, and data acquisition. Three lectures and one laboratory per week. Additional course fee is required.
Prerequisites: ENGR 152 Engineering Principles II and PHYS 212 General Physics with Calculus II.
Static force and moment vectors, resultants. The free-body diagram is used extensively to understand the equilibrium of a whole physical system through isolation of each component, particle, or body. Applications to simple trusses, frames, and machines. Distributed loads. Internal forces in beams. Properties of areas, second moments. Laws of friction. Additional course fee is required.
Co-requisite: MATH 301 Calculus III
Prerequisites: ENGR 152 Engineering Principles II and PHYS 211 General Physics w/Calculus I.
This course considers the mathematical description of particles and rigid bodies in motion under the action of forces, moments and couples. Students learn how to describe the geometry of motion (kinematics) and then move into two and three-dimensional kinetic analysis. Applications using computer software are included. Additional course fee is required.
Prerequisite: ENGM 211 Statics
Course concerns the science underlying the behavior of engineering materials, including the relation between atomic structure and mechanical, electrical, and magnetic properties in metals, ceramics, polymers, composite materials, and semiconductors. Phase diagrams, heat treatment, and corrosion mechanisms are also presented. Laboratory exercises are included to enhance course theory and to provide hands-on experience with materials measurement apparatus and analysis techniques. Two lectures and one laboratory per week. Additional course fee is required. Prerequisites: CHEM 211 General Chemistry I and ENGR 152 Engineering Principles II.
Solution to problems in mechanical engineering using numerical techniques. Development of numerical models beginning with physical model analysis, description of appropriate governing equations, selection of critical parameters, choice of solution methodology, and application of numerical solution procedure. Applications selected from a wide variety of topics in mechanical engineering. Problems will be solved by hand using the finite element method (FEM) and via software packages that use both FEM and the finite volume method. Advanced solid modeling techniques are also covered. Additional course fee is required.
Corequisite: ENGM 380 Heat Transfer
Prerequisites: ENGM 320 Mechanics of Materials and ENGM 330 Fluid Mechanics.
or ENGB 330 Biotransport and ENGB 340 Mechanics of Biomaterials.
Serves as an introduction to probability and statistics with content and application directed toward the engineering and science disciplines. Topics to be covered include methods of describing data, probability, random variables and their distributions, estimation, hypothesis testing, linear regression and correlation.
Does not meet math major requirements.
Prerequisite: MATH 202 Calculus II or equivalent.
Measurements of biomedical signals and systems in time and frequency domain, filter design and feedback control as applied to common biomedical imaging systems. One two-hour laboratory per week.
Introduction to solving clinical issues including biomaterials, scaffolds, artificial organs, stem cell engineering, and regenerative medicine. Students will understand the fundamental principles of tissue engineering and apply these principles toward the fabrication of 3-D artificial tissue, organ regeneration, and regenerative medicine therapy. Provides various strategic approaches of cell/tissue-based engineering to restore, maintain, and improve damaged and/or diseased tissue.
Prerequisites: BIOL 211 General Biology I and ENGM 250 Principles of Material Science
This course covers fundamental chemical principles, reactions, and mode theories. Special emphasis is given to the role of chemistry in everyday life. Three lectures and one laboratory period per week. Additional course fee is required. Prerequisite: CHEM 211 General Chemistry I.
Introduction to civil design for transportation, municipal, and private development projects. Creation of digital topographic maps using survey data of existing terrain is emphasized. For transportation systems the geometric layout of highways, streets, and intersections is covered using current AASHTO and ODOT standards. For private and municipal projects, site plans include vehicle access, parking, and pedestrian access in accordance with ADA requirements and Oregon state codes. Storm water drainage and sanitary sewer pipe systems are designed in accordance with local or state standards. The development of grading plans for on-site construction activities is emphasized. This course introduces students to drafting and design using AutoCAD and Civil3D software. Additional course fee is required.
Prerequisites: ENGR 151 Engineering Principles and MATH 201 Calculus I.
Basic principles of land surveying and surveying equipment. Concepts include calculating position on spherical and plane surfaces. Principles of vertical and horizontal measurements in engineering and construction projects. One lecture and one three-hour laboratory per week. Additional course fee is required.
Prerequisite: MATH 190 Precalculus Mathematics
Course covers fundamental environmental engineering and science principles relevant to engineered and natural systems. Topics include an introduction to sustainability, equilibria, kinetics, mass and energy balances, mass transport processes, population dynamics, water quality, sources of pollution, ecosystem structure and function, biogeochemical cycling, and oxygen demand. The course also includes an introduction to application of these principles to the design of environmental control measures and engineered systems, including design of water supply and treatment processes, wastewater treatment processes, processes for air pollution control, and groundwater remediation.
Prerequisites: CHEM 211 General Chemistry and MATH 311 Differential Equations with Linear Algebra.
Analysis and design of statically determinate and indeterminate structures; beams, trusses, frames, arches, and cables. Methods include classical, energy, matrix, and computer solutions. Additional course fee is required. Prerequisites: ENGM 320 Mechanics of Materials.
Course covers basic physical and mechanical properties of soils, including specific gravity, grain size distribution, plasticity, permeability, consolidation and shear strength. Includes the application of these properties to calculate stresses in a soil mass, lateral earth pressures for walls and anchor blocks, and slope stability analysis. Instruction in site investigation and introduction to insitu testing. Three lectures and one two-hour laboratory per week. Additional course fee required.
Prerequisites: ENGM 320 Mechanics of Materials.
Fundamental concepts of hydraulics and hydrology, and their application in civil engineering. Topics include applications of fluid mechanics to hydraulic infrastructure, principals of open channel flow, the hydrologic cycle, precipitation, evaporation, stream flow hydrographs, hydrologic and hydraulic stream routing, hydrologic measurements, and application of hydrologic models. Three lectures and one two-hour laboratory per week. Additional course fee is required.
Prerequisites: ENGM 330 Fluid Mechanics.
Introduction to economic analysis techniques for engineering decision-making. Topics include the time value of money, cost estimation methods, cash flow, interest, equivalence, depreciation, and inflation. Compare engineering alternatives on the basis of economic parameters. Additional course fee is required.
Prerequisites: Senior standing or instructor permission.
Introduction to planning, design, and operation of transportation systems. Concepts of human factors and vehicle performance characteristics in design. Topics include geometric design of highways, traffic stream variables, basic traffic flow models, applications of statistical analysis in traffic queueing theory, highway and street intersection capacity, level of service analysis for highways, traffic control concepts, travel demand and traffic forecasting, and an introduction to highway materials and pavement design. Additional course fee is required.
Corequisite: MATH 330 Engineering Statistics
Prerequisites: ENGM 211 Statics and ENGC 220 Engineering Surveying
Principles and practice of construction engineering and project management. Development of cost estimates and project schedules. Basic construction methods and fundamental construction terminology. Overview of civil engineering professional practice including career paths, ethics and professionalism, project planning, dispute resolution, and effective decision making. Two lectures and one two-hour laboratory per week. Additional course fee is required.
Prerequisites: Senior standing or consent of instructor.
Static force and moment vectors, resultants. The free-body diagram is used extensively to understand the equilibrium of a whole physical system through isolation of each component, particle, or body. Applications to simple trusses, frames, and machines. Distributed loads. Internal forces in beams. Properties of areas, second moments. Laws of friction. Additional course fee is required.
Co-requisite: MATH 301 Calculus III
Prerequisites: ENGR 152 Engineering Principles II and PHYS 211 General Physics w/Calculus I.
This course considers the mathematical description of particles and rigid bodies in motion under the action of forces, moments and couples. Students learn how to describe the geometry of motion (kinematics) and then move into two and three-dimensional kinetic analysis. Applications using computer software are included. Additional course fee is required.
Prerequisite: ENGM 211 Statics
Course concerns the science underlying the behavior of engineering materials, including the relation between atomic structure and mechanical, electrical, and magnetic properties in metals, ceramics, polymers, composite materials, and semiconductors. Phase diagrams, heat treatment, and corrosion mechanisms are also presented. Laboratory exercises are included to enhance course theory and to provide hands-on experience with materials measurement apparatus and analysis techniques. Two lectures and one laboratory per week. Additional course fee is required. Prerequisites: CHEM 211 General Chemistry I and ENGR 152 Engineering Principles II.
Classical treatment of thermodynamics emphasizing the first and second laws and their application to closed and open (control volume) systems undergoing steady, unsteady, and cyclic processes. Introduction to vapor power systems. Tabular and graphical thermodynamic property data are used in analytical work. Additional course fee is required. Prerequisite: ENGR 152 Engineering Principles II and PHYS 212 General Physics with Calculus II.
Behavior of deformable body systems under combinations of external loading is presented. Analysis of stress, deformation, strain, failure fatigue, and creep are included. Mathematical, graphical, and energy methods are utilized. Additional course fee is required. Prerequisites: ENGM 211 Statics and ENGM 250 Principles of Materials Science.
Behavior of deformable body systems under combinations of external loading is presented. Analysis of stress, deformation, strain, failure fatigue and creep are included. Mathematical, graphical and energy methods are utilized. One two-hour laboratory per week. Additional course fee is required.
Corequisite: ENGM 320 Mechanics of Materials.
Course covers presentation and development of fundamental concepts of fluids such as continua, including velocity, pressure, and viscosity. Topics include fluid statics, hydrostatic analysis of submerged bodies and manometry methods; development of the governing equations of mass, momentum, and energy conservation for fluid motion using both integral and differential control volume analysis; incompressible inviscid flow, dimensional analysis and similitude; pipes, ducts, and open channel flow; and boundary-layer concepts and their application to lift and drag. Additional course fee is required. Prerequisites: ENGM 212 Dynamics, ENGM 311 Engineering Thermodynamics and MATH 311 Differential Equations w/ Linear Algebra.
Serves as an introduction to probability and statistics with content and application directed toward the engineering and science disciplines. Topics to be covered include methods of describing data, probability, random variables and their distributions, estimation, hypothesis testing, linear regression and correlation.
Does not meet math major requirements.
Prerequisite: MATH 202 Calculus II or equivalent.
Fundamental principles of reinforced concrete design in accordance with the ACI Building Code. Topics include concrete materials, beams in bending, shear, and torsion, development, anchorage and splicing, serviceability, columns, slabs, frames, and footings. Additional course fee is required.
Prerequisites: ENGC 330 Structural Analysis and Design.
Basic principles of structural steel design and analysis. Topics include axial members, beams, bolted and welded connections, composite beams, and structural systems. Emphasis will be on the LRFD Method and AISC Code. Additional course fee is required.
Prerequisites: ENGC 330 Structural Analysis and Design.
Introduction to digital systems and binary codes; Boolean algebra and digital logic devices; combinational logic circuits and design methods; ROM and RAM memory elements; sequential logic circuits and design methods. Laboratory experience includes TTL logic circuits and CAD tools. Three lectures and one laboratory per week. Additional course fee is required. Prerequisite: ENGR 152 Engineering Principles II or CSIS 201 Introduction to Computer Science I.
Basic concepts of DC and AC electrical circuits are covered, as are voltage-current relationships for circuit elements, Kirchhoff's laws, and Thévenin and Norton theorems. Includes basic transient and sinusoidal steady-state analysis; frequency domain analysis; frequency response, resonance and measurement concepts. Applications of the operational amplifier. Analysis and design aided by circuit simulation software. Three lectures and one laboratory per week. Additional course fee is required.
Prerequisites: ENGR 152 Engineering Principles II, MATH 311 Differential Equations with Linear Algebra and PHYS 212 General Physics with Calculus II.
This course is an introduction to electrical power systems, with a focus on power generation, transmission, and loads. AC and DC electric machines, transformers, power transmission lines, and three phase power systems are discussed. Includes phasor analysis, rms signals and power factor. Additional course fee is required.
Corequisite: ENGE 250 Electrical Circuit Analysis.
Prerequisite: PHYS 212 General Physics with Calculus II.
Introduction to the terminal characteristics of active semiconductor devices. Operation and small-signal models of diodes, junction and field-effect transistors, and operational amplifiers. Basic single-stage and multistage amplifiers: gain, biasing, and frequency response. Switching characteristics of transistors in saturation and cutoff. Three lectures and one three-hour laboratory per week. Additional course fee is required. Prerequisites: ENGE 220 Digital Logic Design and ENGE 250 Electrical Circuit Analysis.
Analog and digital applications of electronic devices: amplifiers, oscillators, filters, modulators, logic circuits, and memory elements. Feedback, stability, and noise considerations. Emphasis on practical design problems and the formulation of design objectives. Three lectures and one three-hour laboratory per week. Additional course fee is required. Prerequisite: ENGE 311 Electronic Devices and Circuits and ENGE 330 Electrical Signals and Networks.
This course teaches students fundamental knowledge in microprocessor architecture. Course topics include microcomputer architecture, assembly language and higher-level programming, I/O programming, data communications, data acquisition systems, memory interfacing and memory architecture. Three lectures and one three-hour laboratory per week. Additional course fee is required.
Prerequisite: CSIS 202 Introduction to Computer Science II and CSIS 310 Data Structures or ENGE 220 Digital Logic Design.
Fundamental concepts of continuous-time and discrete-time signals and systems are covered. Topics covered include linear time-invariant systems, the convolution integral and impulse response; Fourier series and frequency domain analysis; Fourier and Laplace techniques; principles of sampling and modulation; theoretical and practical aspects of electrical networks; loop and nodal analysis of multi-port networks; admittance, impedance, and transmission parameters; and matrix solutions. Additional course fee is required.
Prerequisite: ENGE 250 Electrical Circuit Analysis and MATH 301 Calculus III.
This course teaches students how to design and manufacture microcontroller-based embedded computer systems. Course topics include printed circuit board design and fabrication, I/O interface design, I/O peripheral devices, and data communication interfaces. Real-time operating systems and their integration into an embedded system will be examined. Design projects involve the construction and programming of a microcontroller-based embedded system. Two lectures and one three-hour laboratory per week. Additional course fee is required.
Prerequisites: ENGE 311 Electronic Devices and Circuits and ENGE 320 Microprocessor Architecture.
Sampling as a modulation process, aliasing, the sampling theorem, the Z-transform and discrete-time system analysis, direct and computer-aided design of recursive and nonrecursive digital filters, the Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), digital filtering using the FFT, analog-to-digital and digital-to-analog conversion, effects of quantization and finite-word-length arithmetic. Additional course fee is required. Prerequisite: ENGE 312 Applications of Electronic Devices.
A foundational course for the study of computer science and information systems. The course covers an overview of programming methodology and gives the student an ability to write computer programs using standard style and structure. Programming projects are completed in one or more high-level languages. Prerequisite: CSIS 201 Introduction to Computer Science I or ENGR 152 Engineering Principles II. Additional course fee required.
An introduction to the concepts of information organization, methods of representing information both internally and externally. The course begins with basic structures (stacks, queues, linked lists, and trees) and moves through more complex data structures into the processing of files (sequential, relative, indexed sequential, and others). Programming projects are completed in one or more high-level languages. Additional course fee required. Prerequisites: CSIS 201 Introduction to Computer Science I and CSIS 202 Introduction to Computer Science II.
An introduction to the field of communications among computers and computer systems, with an emphasis placed on LANS (Local Area Network Systems) and the OSI model. Students will experience the installation of one or more network systems. Additional course fee required. Prerequisite: CSIS 202 Introduction to Computer Science II.
An introduction to the design and analysis of algorithms. The course covers the fundamentals of analyzing algorithms for correctness and time and space bounds. Topics include advanced sorting and searching methods, graph algorithms, geometric algorithms, matrix manipulations, string and pattern matching, set algorithms, and polynomial computations. Additional course fee required. Prerequisite: CSIS 310 Data Structures and File Processing.
A study of the organization and architecture of computer systems. The major principles of operating systems are presented, along with case studies involving actual operating systems. Additional course fee required. Prerequisite: CSIS 310 Data Structures and File Processing.
An introduction to discrete mathematics. Topics covered include sets, functions, math induction, combinatorics, recurrence, graph theory, trees, and networks.
Choose one additional math or science elective from the following:
A course to fulfill the general education requirement. Deals with the organization of living things, anatomy and physiology of cells and organisms, reproduction and heredity, and the role of energy in the ecosystem. Bioethical considerations are discussed. Two lectures and one two-hour laboratory per week. Additional course fee is required.
An introduction to life science for those majoring in biology and bioscience-related fields. Topics include basic concepts in chemistry and biological molecules, an introduction to cellular structure, function and metabolism, genetics and theories of inheritance, and an introduction to prokaryotic cells and viruses. Three lectures and one two-hour laboratory per week. Additional course fee is required.
An introduction to life science for those majoring in biology and bioscience-related fields. Topics include a taxonomic survey of protists, fungi, plants, and animals with emphasis on the development, anatomy, and physiology of plants and animals. Three lectures and one three-hour laboratory per week. Additional course fee is required.
Structure and function of the human body. Fall semester topics include basic chemistry, body organization, integument, skeleton, muscles, and the nervous system, including special senses. The course is designed for nonscience majors. Three lectures and one laboratory per week. Additional course fee is required.
This course covers fundamental chemical principles, reactions, and mode theories. Special emphasis is given to the role of chemistry in everyday life. Three lectures and one laboratory period per week. Additional course fee is required. Prerequisite: CHEM 211 General Chemistry I.
Course concerns the science underlying the behavior of engineering materials, including the relation between atomic structure and mechanical, electrical, and magnetic properties in metals, ceramics, polymers, composite materials, and semiconductors. Phase diagrams, heat treatment, and corrosion mechanisms are also presented. Laboratory exercises are included to enhance course theory and to provide hands-on experience with materials measurement apparatus and analysis techniques. Two lectures and one laboratory per week. Additional course fee is required. Prerequisites: CHEM 211 General Chemistry I and ENGR 152 Engineering Principles II.
A study of numerical solutions of mathematical problems, including nonlinear equations, systems of linear equations, polynomial approximations, root finding, integration, and differential equations. Computer programs are written to solve these problems. (Identical to CSIS 300.) Prerequisites: MATH 311 Differential Equations with Linear Algebra and either CSIS 201 Introduction to Computer Science I or ENGR 152 Engineering Principles II.
Serves as an introduction to probability and statistics with content and application directed toward the engineering and science disciplines. Topics to be covered include methods of describing data, probability, random variables and their distributions, estimation, hypothesis testing, linear regression and correlation.
Does not meet math major requirements.
Prerequisite: MATH 202 Calculus II or equivalent.
A study of sample spaces, combinatorial methods, discrete and continuous distributions, moment-generating functions, and the central limit theorem. Prerequisites: MATH 290 Introduction to Proofs and MATH 301 Calculus III.
Introduction to digital systems and binary codes; Boolean algebra and digital logic devices; combinational logic circuits and design methods; ROM and RAM memory elements; sequential logic circuits and design methods. Laboratory experience includes TTL logic circuits and CAD tools. Three lectures and one laboratory per week. Additional course fee is required. Prerequisite: ENGR 152 Engineering Principles II or CSIS 201 Introduction to Computer Science I.
Basic concepts of DC and AC electrical circuits are covered, as are voltage-current relationships for circuit elements, Kirchhoff's laws, and Thévenin and Norton theorems. Includes basic transient and sinusoidal steady-state analysis; frequency domain analysis; frequency response, resonance and measurement concepts. Applications of the operational amplifier. Analysis and design aided by circuit simulation software. Three lectures and one laboratory per week. Additional course fee is required.
Prerequisites: ENGR 152 Engineering Principles II, MATH 311 Differential Equations with Linear Algebra and PHYS 212 General Physics with Calculus II.
This course is an introduction to electrical power systems, with a focus on power generation, transmission, and loads. AC and DC electric machines, transformers, power transmission lines, and three phase power systems are discussed. Includes phasor analysis, rms signals and power factor. Additional course fee is required.
Corequisite: ENGE 250 Electrical Circuit Analysis.
Prerequisite: PHYS 212 General Physics with Calculus II.
Introduction to the terminal characteristics of active semiconductor devices. Operation and small-signal models of diodes, junction and field-effect transistors, and operational amplifiers. Basic single-stage and multistage amplifiers: gain, biasing, and frequency response. Switching characteristics of transistors in saturation and cutoff. Three lectures and one three-hour laboratory per week. Additional course fee is required. Prerequisites: ENGE 220 Digital Logic Design and ENGE 250 Electrical Circuit Analysis.
Analog and digital applications of electronic devices: amplifiers, oscillators, filters, modulators, logic circuits, and memory elements. Feedback, stability, and noise considerations. Emphasis on practical design problems and the formulation of design objectives. Three lectures and one three-hour laboratory per week. Additional course fee is required. Prerequisite: ENGE 311 Electronic Devices and Circuits and ENGE 330 Electrical Signals and Networks.
This course teaches students fundamental knowledge in microprocessor architecture. Course topics include microcomputer architecture, assembly language and higher-level programming, I/O programming, data communications, data acquisition systems, memory interfacing and memory architecture. Three lectures and one three-hour laboratory per week. Additional course fee is required.
Prerequisite: CSIS 202 Introduction to Computer Science II and CSIS 310 Data Structures or ENGE 220 Digital Logic Design.
Fundamental concepts of continuous-time and discrete-time signals and systems are covered. Topics covered include linear time-invariant systems, the convolution integral and impulse response; Fourier series and frequency domain analysis; Fourier and Laplace techniques; principles of sampling and modulation; theoretical and practical aspects of electrical networks; loop and nodal analysis of multi-port networks; admittance, impedance, and transmission parameters; and matrix solutions. Additional course fee is required.
Prerequisite: ENGE 250 Electrical Circuit Analysis and MATH 301 Calculus III.
Theoretical study of static and dynamic electric and magnetic fields. Gauss' law and the static electric field; boundary value problems in electrostatics. Effects of dielectric and magnetic media properties. Magnetostatics; Faraday's law and applications. Maxwell's equations for time-varying fields; wave propagation; Poynting's theorem. Numerical methods and computer simulation tools in electromagnetics are introduced. Additional course fee is required. Prerequisites: ENGE 250 Electrical Circuit Analysis and MATH 301 Calculus III.
This course teaches students how to design and manufacture microcontroller-based embedded computer systems. Course topics include printed circuit board design and fabrication, I/O interface design, I/O peripheral devices, and data communication interfaces. Real-time operating systems and their integration into an embedded system will be examined. Design projects involve the construction and programming of a microcontroller-based embedded system. Two lectures and one three-hour laboratory per week. Additional course fee is required.
Prerequisites: ENGE 311 Electronic Devices and Circuits and ENGE 320 Microprocessor Architecture.
Introduction to analog and digital communications theory and applications. Topics include encoding, modulation and multiplexing techniques, spectral analysis, transmission line effects, noise analysis and filtering, multiple-channel and fiber optic communications, telecommunication systems, and data communications applications. Additional course fee is required. Prerequisite: ENGE 330 Electrical Signals and Networks.
Study of microwave circuits, devices, and techniques as applied to cellular communications and other modern systems. Propagation and reflection on ideal and lossy transmission media. Smith chart and S-parameter tools. Strip lines, microstrip and coplanar lines, and cross talk. Analysis and design of microstrip circuits. Introduction to antenna fundamentals. Includes computer and laboratory exercises. Two lectures and one three-hour laboratory per week. Additional course fee is required. Prerequisites: ENGE 312 Applications of Electronic Devices and ENGE 360 Electromagnetic Fields and Waves.
This course is an introduction to DC-DC converters, rectifiers, inverters, and electrical renewable energy sources. Power electronics switch characterization is discussed and a renewable energy project is integral to the course. Additional course fee is required.
Prerequisites: ENGE 270 Electrical Power Systems and ENGE 312 Applications of Electronic Devices.
Sampling as a modulation process, aliasing, the sampling theorem, the Z-transform and discrete-time system analysis, direct and computer-aided design of recursive and nonrecursive digital filters, the Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), digital filtering using the FFT, analog-to-digital and digital-to-analog conversion, effects of quantization and finite-word-length arithmetic. Additional course fee is required. Prerequisite: ENGE 312 Applications of Electronic Devices.
A foundational course for the study of computer science and information systems. The course covers an overview of programming methodology and gives the student an ability to write computer programs using standard style and structure. Programming projects are completed in one or more high-level languages. Prerequisite: CSIS 201 Introduction to Computer Science I or ENGR 152 Engineering Principles II. Additional course fee required.
A study of numerical solutions of mathematical problems, including nonlinear equations, systems of linear equations, polynomial approximations, root finding, integration, and differential equations. Computer programs are written to solve these problems. (Identical to CSIS 300.) Prerequisites: MATH 311 Differential Equations with Linear Algebra and either CSIS 201 Introduction to Computer Science I or ENGR 152 Engineering Principles II.
Serves as an introduction to probability and statistics with content and application directed toward the engineering and science disciplines. Topics to be covered include methods of describing data, probability, random variables and their distributions, estimation, hypothesis testing, linear regression and correlation.
Does not meet math major requirements.
Prerequisite: MATH 202 Calculus II or equivalent.
A study of sample spaces, combinatorial methods, discrete and continuous distributions, moment-generating functions, and the central limit theorem. Prerequisites: MATH 290 Introduction to Proofs and MATH 301 Calculus III.
Choose one additional math or science elective from the following:
A course to fulfill the general education requirement. Deals with the organization of living things, anatomy and physiology of cells and organisms, reproduction and heredity, and the role of energy in the ecosystem. Bioethical considerations are discussed. Two lectures and one two-hour laboratory per week. Additional course fee is required.
An introduction to life science for those majoring in biology and bioscience-related fields. Topics include basic concepts in chemistry and biological molecules, an introduction to cellular structure, function and metabolism, genetics and theories of inheritance, and an introduction to prokaryotic cells and viruses. Three lectures and one two-hour laboratory per week. Additional course fee is required.
An introduction to life science for those majoring in biology and bioscience-related fields. Topics include a taxonomic survey of protists, fungi, plants, and animals with emphasis on the development, anatomy, and physiology of plants and animals. Three lectures and one three-hour laboratory per week. Additional course fee is required.
Structure and function of the human body. Fall semester topics include basic chemistry, body organization, integument, skeleton, muscles, and the nervous system, including special senses. The course is designed for nonscience majors. Three lectures and one laboratory per week. Additional course fee is required.
This course covers fundamental chemical principles, reactions, and mode theories. Special emphasis is given to the role of chemistry in everyday life. Three lectures and one laboratory period per week. Additional course fee is required. Prerequisite: CHEM 211 General Chemistry I.
Course concerns the science underlying the behavior of engineering materials, including the relation between atomic structure and mechanical, electrical, and magnetic properties in metals, ceramics, polymers, composite materials, and semiconductors. Phase diagrams, heat treatment, and corrosion mechanisms are also presented. Laboratory exercises are included to enhance course theory and to provide hands-on experience with materials measurement apparatus and analysis techniques. Two lectures and one laboratory per week. Additional course fee is required. Prerequisites: CHEM 211 General Chemistry I and ENGR 152 Engineering Principles II.
An introduction to discrete mathematics. Topics covered include sets, functions, math induction, combinatorics, recurrence, graph theory, trees, and networks.
A study of numerical solutions of mathematical problems, including nonlinear equations, systems of linear equations, polynomial approximations, root finding, integration, and differential equations. Computer programs are written to solve these problems. (Identical to CSIS 300.) Prerequisites: MATH 311 Differential Equations with Linear Algebra and either CSIS 201 Introduction to Computer Science I or ENGR 152 Engineering Principles II.
Serves as an introduction to probability and statistics with content and application directed toward the engineering and science disciplines. Topics to be covered include methods of describing data, probability, random variables and their distributions, estimation, hypothesis testing, linear regression and correlation.
Does not meet math major requirements.
Prerequisite: MATH 202 Calculus II or equivalent.
A study of sample spaces, combinatorial methods, discrete and continuous distributions, moment-generating functions, and the central limit theorem. Prerequisites: MATH 290 Introduction to Proofs and MATH 301 Calculus III.
An introduction to DC and AC circuit theory, electronics, and instrumentation. Specific areas of study include Ohm’s law, basic circuit analysis techniques, electrical power, motor selection, circuit simulation software, measurement methods, various types of instrumentation devices, and data acquisition. Three lectures and one laboratory per week. Additional course fee is required.
Prerequisites: ENGR 152 Engineering Principles II and PHYS 212 General Physics with Calculus II.
Static force and moment vectors, resultants. The free-body diagram is used extensively to understand the equilibrium of a whole physical system through isolation of each component, particle, or body. Applications to simple trusses, frames, and machines. Distributed loads. Internal forces in beams. Properties of areas, second moments. Laws of friction. Additional course fee is required.
Co-requisite: MATH 301 Calculus III
Prerequisites: ENGR 152 Engineering Principles II and PHYS 211 General Physics w/Calculus I.
This course considers the mathematical description of particles and rigid bodies in motion under the action of forces, moments and couples. Students learn how to describe the geometry of motion (kinematics) and then move into two and three-dimensional kinetic analysis. Applications using computer software are included. Additional course fee is required.
Prerequisite: ENGM 211 Statics
Mechanical and metallurgical fundamentals of cutting operations, metal forming by deformation, material fabrication, and nontraditional processing. Manufacturing systems, concepts in production, green design, and design for manufacturability (DFM). Additional course fee is required. Corequisite: ENGM 250 Principles of Materials Science
Course concerns the science underlying the behavior of engineering materials, including the relation between atomic structure and mechanical, electrical, and magnetic properties in metals, ceramics, polymers, composite materials, and semiconductors. Phase diagrams, heat treatment, and corrosion mechanisms are also presented. Laboratory exercises are included to enhance course theory and to provide hands-on experience with materials measurement apparatus and analysis techniques. Two lectures and one laboratory per week. Additional course fee is required. Prerequisites: CHEM 211 General Chemistry I and ENGR 152 Engineering Principles II.
Classical treatment of thermodynamics emphasizing the first and second laws and their application to closed and open (control volume) systems undergoing steady, unsteady, and cyclic processes. Introduction to vapor power systems. Tabular and graphical thermodynamic property data are used in analytical work. Additional course fee is required. Prerequisite: ENGR 152 Engineering Principles II and PHYS 212 General Physics with Calculus II.
Advanced topics in the first and second laws of thermodynamics. Covered topics include availability and irreversibility, vapor and gas power cycles, mixtures of gases and vapors, non-reacting flows, and compressible flow. Also covered are applications to spark and compression ignition engines, gas and vapor turbines, refrigeration systems, heat exchangers, and psychrometrics. Additional course fee is required. Prerequisite: ENGM 311 Engineering Thermodynamics.
Behavior of deformable body systems under combinations of external loading is presented. Analysis of stress, deformation, strain, failure fatigue, and creep are included. Mathematical, graphical, and energy methods are utilized. Additional course fee is required. Prerequisites: ENGM 211 Statics and ENGM 250 Principles of Materials Science.
Behavior of deformable body systems under combinations of external loading is presented. Analysis of stress, deformation, strain, failure fatigue and creep are included. Mathematical, graphical and energy methods are utilized. One two-hour laboratory per week. Additional course fee is required.
Corequisite: ENGM 320 Mechanics of Materials.
Course covers presentation and development of fundamental concepts of fluids such as continua, including velocity, pressure, and viscosity. Topics include fluid statics, hydrostatic analysis of submerged bodies and manometry methods; development of the governing equations of mass, momentum, and energy conservation for fluid motion using both integral and differential control volume analysis; incompressible inviscid flow, dimensional analysis and similitude; pipes, ducts, and open channel flow; and boundary-layer concepts and their application to lift and drag. Additional course fee is required. Prerequisites: ENGM 212 Dynamics, ENGM 311 Engineering Thermodynamics and MATH 311 Differential Equations w/ Linear Algebra.
Kinematic and dynamic analysis of basic mechanisms with an introduction to kinematic synthesis. Fundamentals of vibration theory and their application to lumped parameter systems. Both single- and multi-degree of freedom systems having steady-state and transient responses are considered. Concepts of machine dynamics and design are supplemented with mathematical, graphical, and computer techniques and analysis. Applications using dynamic analysis software are included. Additional course fee is required. Prerequisites: ENGM 212 Dynamics and MATH 311 Differential Equations with Linear Algebra.
Solution to problems in mechanical engineering using numerical techniques. Development of numerical models beginning with physical model analysis, description of appropriate governing equations, selection of critical parameters, choice of solution methodology, and application of numerical solution procedure. Applications selected from a wide variety of topics in mechanical engineering. Problems will be solved by hand using the finite element method (FEM) and via software packages that use both FEM and the finite volume method. Advanced solid modeling techniques are also covered. Additional course fee is required.
Corequisite: ENGM 380 Heat Transfer
Prerequisites: ENGM 320 Mechanics of Materials and ENGM 330 Fluid Mechanics.
or ENGB 330 Biotransport and ENGB 340 Mechanics of Biomaterials.
Course covers fundamental aspects of conduction, convection, and radiation heat transfer; analytical and numerical solutions of heat transfer problems, estimation of heat transfer coefficients, and heat exchanger design. Boiling and condensation are also considered. Additional course fee is required.
Prerequisite: ENGM 330 Fluid Mechanics.
Laboratory exercises are included to enhance course theory from Application of Engineering Thermodynamics, Fluid Mechanics, and Heat Transfer. Hands-on experiences will occur with measurement apparatus and analysis techniques. Common misconceptions will be addressed. One two-hour laboratory per week. Additional course fee is required. Corequisite: ENGM 380 Heat Transfer.
Prerequisites: ENGM 312 Application of Engineering Thermodynamics and ENGM 330 Fluid Mechanics.
Fundamental principles for the synthesis, analysis, and design of mechanical elements and systems. The use of statics, dynamics, mechanics of materials, and failure theories to evaluate mechanical systems under static and dynamic loading. Application of design techniques to specific mechanical components such as gears, springs, shafts, bearings, and fasteners, with an emphasis on design for manufacturability. Computer modeling tools including finite element analysis are utilized. Additional course fee is required. Prerequisites: ENGM 320 Mechanics of Materials and ENGM 350 Machine Dynamics and Vibrations. Corequisite: ENGM 360 Finite Elements and Computer Modeling
This course covers various aspects of control system engineering including dynamic system modeling, control system stability and performance analysis in the frequency and time domains. Special attention is given to compensator design by PID. Principles of closed loop mechanical, electrical, hydraulic, pneumatic, and thermal systems are considered. Laboratory experiments include both MATLAB simulations and PLC programming with applications. Two lectures and one laboratory per week. Additional course fee is required.
Prerequisite: ENGM 350 Machine Dynamics and Vibrations and MATH 311 Differential Equations with Linear Algebra.
From a biomechanical perspective, the healthy human skeleton is an optimal structure that has adapted its form in response to its function. Studying the mechanics of the skeleton provides information that can be used not only to design artificial prostheses and materials — and thus address specific health care issues — but also to aid in the design of more traditional engineering structures by understanding the behavior and underlying design features of this complex dynamic structure. The purpose of this course is twofold: to learn the fundamental concepts of orthopedic biomechanics and to enhance skills in mechanical engineering and bioengineering by analyzing the mechanical behavior of various complex biomedical problems.
Prerequisites: ENGM 360 Finite Elements and Computer Modeling
This course provides an introduction to flight dynamics of aircraft and autonomous aircraft systems. Longitudinal, lateral and directional static stability will be analyzed for conventional aircraft. The complete aircraft governing dynamic equations will be developed and reduced to conventional linear mode approximations using small disturbance theory. Linear systems theory is used to analyze, design aircraft, and develop control systems to meet desired dynamic performance metrics. Additional course fee is required.
Prerequisites: ENGM 350 Machine Dynamics and Vibration.
Fundamental principles of energy engineering with applications to both fossil fuel combustion and alternative energy systems. The first half of the course is dedicated to a quantitative understanding of fossil fuel combustion and its applications. Stoichiometry, flame temperature, chemical kinetics and applications of both premixed and diffusion flames, as well as sources of emissions and emission control strategies are presented. The second half of the course is focused on alternative and renewable energy systems, from a technical, economic, and environmental perspective. Students will study the basic theory of fuel cells, wind turbines, photovoltaic devices, biomass and nuclear energy generation and determine component and system efficiencies. Additionally, students will become familiar with the relationship between ethical issues and the quality of our environment, and the complex interplay between engineering systems and society. This course builds on previous studies in thermodynamics, fluid mechanics and heat transfer. Additional course fee required.
A study of numerical solutions of mathematical problems, including nonlinear equations, systems of linear equations, polynomial approximations, root finding, integration, and differential equations. Computer programs are written to solve these problems. (Identical to CSIS 300.) Prerequisites: MATH 311 Differential Equations with Linear Algebra and either CSIS 201 Introduction to Computer Science I or ENGR 152 Engineering Principles II.
Serves as an introduction to probability and statistics with content and application directed toward the engineering and science disciplines. Topics to be covered include methods of describing data, probability, random variables and their distributions, estimation, hypothesis testing, linear regression and correlation.
Does not meet math major requirements.
Prerequisite: MATH 202 Calculus II or equivalent.
A study of sample spaces, combinatorial methods, discrete and continuous distributions, moment-generating functions, and the central limit theorem. Prerequisites: MATH 290 Introduction to Proofs and MATH 301 Calculus III.
Daniela Makowski
It wasn’t that difficult for me to find a job after graduation, knowing that I had a great degree. [Employers] really knew that they could count on my education. ... The best decision I ever made was to go to George Fox for engineering.
What’s after George Fox
Bachelor's degree graduates earning engineering degrees are expected to be the highest paid, leading all STEM graduates, according to the 2016 Job Outlook survey conducted by the National Association of Colleges and Employers. Job growth for engineers is expected to rise, according to the Bureau of Labor Statistics, due to an infrastructure that continues to age (civil engineering), the ever-increasing demand for highly skilled computer scientists, and the ability of electrical and mechanical engineers to develop and apply new technologies. “Job prospects may be best for those who stay abreast of the most recent advances in technology,” notes the BLS.